
PART XII: Threads

Copyright © David Leberknight and Ron LeMaster

Version 2011

Object – Oriented Design with UML and Java

(XII) Java Threads - 2

Java Threads

 A Thread is an execution process.

 Only one thread at a time may be “running” on a single-processor machine.

 In an environment that supports multi-threading, significant efficiencies and
design elegance can be gained by careful use of Threads (multiple
concurrent flows of control through the program).

 Java provides excellent support for Threads, but that doesn’t make it easy!

 Multi-threaded programming is DIFFICULT.

 For a good low-level Java reference, see Concurrent Programming in Java
- Design Principles and Patterns (2nd Ed.)
Doug Lea, Addison Wesley 1996. <ISBN 0-201-31009-0>

 Now, with java.util.concurrency !!! Java Concurrency in Practice
Brian Goetz, Addison Wesley 2006. <ISBN 0-321-34960-1 >

(XII) Java Threads - 3

Threads

Threads are indispensable …

 for user interfaces that must remain responsive while simultaneously
computing some result (the Fractal Applet is an example of this).

 for servers with more than one simultaneous client.

 for polling loops (if necessary).

 for web servers.

 for increased parallel-processing performance.

 when modeling a naturally concurrent or asynchronous situation.

Note: Even if main() returns, a Java program will continue to run as long
as one or more non-daemon threads remains alive. This is the case
with most Java AWT applications.

Note: Even if your program never explicitly creates a thread, frameworks
do. This is not a topic you can safely ignore.

(XII) Java Threads - 4

Thread & Runnable

 Multi-Threaded programming is hard despite the java.lang.Thread
class and the java.lang.Runnable interface, which have easy syntax:

public interface Runnable

{

public abstract void run();

}

public class Thread ...

{

public Thread(Runnable runner) { … }

public synchronized void start() { … } // calls run()

...

}

(XII) Java Threads - 5

Simple Thread Example

class ThreadTest {

public static void main(String[] args) {

Thread t = new Thread(new WorkerProcess());

System.out.print(“M1 : ”);

t.start();

System.out.print(“M2 : ”);

} }

class WorkerProcess implements Runnable {

public void run() {

System.out.print(“Run ! ”);

} }

 Outputs: M1 : M2 : Run !

 Outputs: M1 : Run ! M2 :

(XII) Java Threads - 6

Thread Safety

 Interleaved operations (by multiple Threads) can easily corrupt data.

 Whenever 2 or more concurrent Threads call methods on behalf of the
same object, care must be taken to ensure the integrity of that object.

 A JVM may switch Threads in the middle of a 64-bit assignment. 64 bit
operations are not atomic. If some other Thread attempts to use the half-
copied value, it’s a bug.

Thread BUGS can be hard to fix, especially in light of the following:

 The Java language does not guarantee Thread-switching fairness.

 Different JVMs use different Thread-switching algorithms, resulting in
code that works on one platform but not on others.

 A single program may have different behavior on different runs.

 A program may crash after running correctly for long periods of time.

(XII) Java Threads - 7

Thread Safety

Code that must be thread safe:

 Anything shared between two or more threads.

 Singletons.

 Globals that have state and not just behavior.

A class is thread safe if it never enters an invalid state, even when an
instance of that class is accessed by multiple threads concurrently.

Objects that are always thread safe:

 Objects that have no state.

 Objects that are immutable (final).

 Objects that have no compound operations (ie: every change in state
occurs atomically).

(XII) Java Threads - 8

Thread Safety Example

public class Foo {

private int maxElements = 10;

private int numElements = 0;

private ArrayList elements = new ArrayList();

public void add(Object newElement) {

numElements = elements.length();

if(numElements < maxElements) {

elements.add(newElement);

} } }

 Under what circumstances would this code not be “Thread-safe” ?!?

 Two threads operating on one instance of this class; numElements = 9;
both Threads get to the point just before the if statement…

 How might we fix the problem?

(XII) Java Threads - 9

Mutual Exclusion

 The key to achieving Thread safety lies in the concept of mutual exclusion.

 Blocks of code in Java may be declared to be synchronized. In order to
enter a synchronized block of code, a Thread must acquire the key to a lock
(aka: a “mutex”) held by the lock’s “monitor object.”

 If the lock is already held by another Thread, then the new Thread must
wait (the JVM will block it) until the lock is released.

 Any java.lang.Object may be used as a lock monitor.

 Synchronization locks are only respected by synchronized blocks of code
that use the same monitor object. In other words, just because a block of
code is synchronized doesn’t mean it’s protected from concurrency
problems. All other code which could possibly interfere with the state of
the object in question must also be synchronized using the same monitor
object.

(XII) Java Threads - 10

Mutual Exclusion

 The synchronized statement acts as a gate to the subsequent block of code.
To pass through the gate, the Thread must acquire the lock.

 Only one Thread at a a time is allowed to acquire any given lock.

 A single Thread may hold more than one lock at one time.

 Unlocked code is not protected.

 Java’s low level mechanisms to control threads must be used in the context
of higher level policies, with discipline and understanding.

(XII) Java Threads - 11

Mutual Exclusion

Another way to achieve mutual exclusion is to design the application such
that all processing that might operate on shared resources is represented as
some kind of event or command that can be put into a queue, with a single
thread that runs the commands one at a time.

 This is an example of the producer-consumer design pattern.

 Use java.util.concurrent.BlockingQueue.

For applications that use Swing, all code that updates UI widgets should do so
using the single Event / Paint Dispatching Thread (Swing widgets are NOT
thread safe).

 Design your application so that everything that operates on the UI is
runnable. Then add that event/command to Swing’s dispatch queue with
a single line of code:

SwingUtilities.invokeLater(runnable);

(XII) Java Threads - 12

Performance Optimizations

 Synchronize the smallest possible block of code to minimize the odds of
multi-Thread contention.

 Don’t synchronize methods that are called only from one thread.

 Don’t use synchronized Java library classes unless you need to (they’re
slow). For example, use StringBuilder, not StringBuffer.

(XII) Java Threads - 13

The Synchronized Keyword

public synchronized void foo() {

bar();

}

 Is equivalent to:

public void foo() {

synchronized(this) { // “this” is the monitor object

bar();

} }

 If the above method were static, then the monitor object would be the
instance of class Class for the given class.

(XII) Java Threads - 14

class Thread implements Runnable

 Note: static methods operate on the current Thread.

public Thread(Runnable r)

public static void sleep(long ms) throws InterruptedException

public static void yield()

public static Thread currentThread()

public synchronized void start()

public final boolean isAlive()

public final void join() throws InterruptedException

public final void suspend() // deprecated.

public final void resume() // deprecated.

public final void stop() // deprecated.

(XII) Java Threads - 15

Example: Fractal Applet
: ControlPanel

$DrawHandler
:Fractal

Click Draw

return

Thread

dies

User

doDraw()

getNewParameters()

:DrawingCanvas

getZoom()getMaxIterations()

makeNewFractal)

:Julia

Drawing

makeNewDrawing()
<< create >>

makeNewCalculator()
<< create >>

:Julia

Calculator
<< create >>

:Thread

start() run()

calcFractal()
calculatorCallback()

setCurrentDrawing()

redraw()

return

Thread

dies
return

return

(XII) Java Threads - 16

Example: Fractal Applet

 Based on information contained in the Sequence Diagram, where is there a
need for a synchronization strategy?

 Note the use of the open arrowhead in UML to indicate an asynchronous
method call.

Look at the source code for the Fractal Applet...

 Note the use of Thread.yield() in the inner loop of the calculator.
This is not guaranteed to do anything. But for most browsers it does help
the UI responsiveness when users click Next and Previous to browse
existing images concurrent with a new image being created.

 Try commenting out the synchronized keyword for class Fractal’s
calculatorCallback() method and look for weird bugs (try
creating a zoom rectangle just as a new drawing completes).

 Notice that calculator threads may be stopped.

(XII) Java Threads - 17

Java Thread Life Cycle (State Diagram)

Created

Dead

Alive

Runnable

Running
Do / execute

code

get

scheduled

[lock available

if synchronized]

<< deprecated >>

stop

start

run returns

yield, get

scheduled, lock

not available if

synchronized

new

Thread

Joined

join (with

another

Thread)

other

Thread's

death,

timeout,

interrupt

Asleep

Waiting

wait / release

lock

sleep

timeout,

interrupt,

notify{ All }

timeout, interrupt

Suspended

<< deprecated >>
{ only one Thread at a time

may be Running on a single

processor machine }

(XII) Java Threads - 18

java.lang.ThreadDeath

class ThreadDeath extends Error { ... }

 This Exception is unique in that if it is caught, it must be rethrown, or
else the Thread’s resources do not get cleaned up; this includes releasing
locks. It is for this reason that Thread.stop() is deprecated.
ThreadDeath is to be avoided.

(XII) Java Threads - 19

How to avoid Thread.stop

 I have seen this code output a counter from 0-2 and also from 0-10 ...

public class ThreadStop implements Runnable {

private volatile boolean stop = false; // volatile

public static void main(String[] args) {

new ThreadStop().go();

}

private void go() {

new Thread(this).start();

sleep(100);

stop(); // Not the same as Thread.stop

}

(XII) Java Threads - 20

How to avoid Thread.stop (cont.)

public void run() {

for(int i = 0 ; ! stop ;) {

System.out.println("i = " + i++);

sleep(10);

} }

private void sleep (long milliseconds) {

try {

Thread.sleep(milliseconds);

}

catch(InterruptedException ignore) {}

}

public void stop() {

stop = true;

}

} // end ThreadStop

(XII) Java Threads - 21

Volatile and the Java Memory Model

 Without the volatile keyword, this program could in theory run
forever! The reasoning has to do with the “Java memory model” whereby
threads that access shared variables may keep private working copies of the
variables; the volatile keyword forces all updates to the variable to be
pushed out to shared main memory. Otherwise this is only guaranteed to
occur at synchronization points.

 Synchronization ensures more than mutual exclusion, it ensures up-to-date
visibility of shared memory.

(XII) Java Threads - 22

Join Example

 The join() method will block until a given thread dies. Meanwhile, if it
has any synchronization locks, it does not release them...

public class JoinTest implements Runnable

{

public static void main(String[] args) {

new JoinTest().go();

}

public synchronized void run() {

System.out.println("I am alive! ");

}

(XII) Java Threads - 23

Join Example

private void go() {

Thread t = new Thread(this);

System.out.println("t is alive: " + t.isAlive());

synchronized(this) {

t.start();

System.out.println("t is alive: " + t.isAlive());

}

try {

t.join();

System.out.println("t is alive: " + t.isAlive());

}

catch(InterruptedException ie) { }

}

} // end JoinTest

(XII) Java Threads - 24

Join Example

Outputs:

t is alive: false

t is alive: true

I am alive!

t is alive: false

 What if the whole method go() were synchronized instead of just part of it?

The program would hang forever… why?

 What if there were no synchronized statements at all?

The above behavior would not be guaranteed. How might it differ?

(XII) Java Threads - 25

Wait & NotifyAll

 Any java.lang.Object can be used as a synchronization monitor, holding
the lock for synchronized code. This functionality is built into the class
Object.

 The class Object also provides a wait/notify service, allowing different
Threads to coordinate their efforts (eg: producer / consumer).

class Object

{

public final void wait() throws InterruptedException;

public final void notify(); // usually use notifyAll()

public final void notifyAll();

// . . .

}

(XII) Java Threads - 26

Wait & NotifyAll (cont.)

 The wait(), notify() and notifyAll() methods can only be called from
within a synchronized block of code; the object on whose behalf they are
called is the monitor object which holds the synchronization lock.

 The wait() method releases the lock, and then puts the current Thread into
a wait state until some other Thread (that then holds the same lock) calls
notifyAll().

 notify() will choose one arbitrary Thread that is waiting on the lock in
question and force it out of the wait state into the runnable state. This
might not be the Thread that you want! If you are unsure about this, use
notifyAll(). Note however that there is a possible performance problem
with notifyAll() - a “liveness” problem known as the “Thundering Herd”.

 wait() only releases one of the Thread’s (possibly many) monitor locks.
If there’s more than one lock owned by the Thread, this can lead to a
“lock out” condition if the Thread required to later call notifyAll() needs
first to acquire one of the other unreleased locks.

(XII) Java Threads - 27

Wait & NotifyAll

 If a Thread is in the wait state, below, and some other Thread (running in
code synchronized using bar as the monitor) sets conditionTrue and calls
bar.notifyAll(), the waiting Thread will get bumped out of its wait state,
allowing it to vie once again for bar’s lock. Whenever it gets the lock, it
will see conditionTrue, and will proceed to “do something” ...

class Foo {

public void doSomethingAsSoonAsConditionTrue() {

synchronized(bar) {

while(! conditionTrue) {

try {

bar.wait();

} catch(InterruptedException ie) { }

} // “do something” here

} } }

(XII) Java Threads - 28

Deadlock & Liveness
 Once you ensure that your code is Thread-safe then there is still the

problem of ensuring that the code remains alive. Misuse of Java’s
built-in Threading facilities (examples: overuse of synchronization,
naïve design) can cause serious performance degradations, lock out, &
deadlock (you’ll know it when you see it - your code just hangs… ;-(

 Deadlock is the condition where two Threads lock resources in
different orders… Thread 1 locks resource A, then B; Thread 2 locks
B, then A. Bad timing will cause this to hang forever.

 Deadlock is not possible if there is only one monitor object in use, nor
if locks are always acquired in the same A, B order.

 Java does not support timeouts on a synchronization block.

 Java does not detect deadlock.

 Commercial RDBMSs have deadlock detection, usually killing one
Thread at random; it is the application programmer’s responsibility to
detect the Exception and retry the failed transaction.

(XII) Java Threads - 29

Deadlock & Liveness

Other liveness problems include:

 synchronization is slow

 wait forever (notify never called) - program hangs

 thundering herd

 lock out - program hangs

 join with “immortal” Thread - program hangs

 unfair time slicing

 mystery bugs that are really safety problems at their core

(XII) Java Threads - 30

Collection Class Synchronization

 This is an example of the decorator design pattern.

 The monitor object for synchronization is syncMap.

Map normalMap = new HashMap();

Map syncMap = Collections.synchronizeMap(normalMap);

synchMap.put(“foo”, “bar”); // thread safe

Iterator it = synchMap.keySet().iterator();

while(it.hasNext)

{

String key = (String) it.next();

// Might throw ConcurrentModificationException

// ...

}

(XII) Java Threads - 31

Collection Class Synchronization

 One way to prevent ConcurrentModificationException is to
hold the lock for the duration of the iteration. But it is not generally a
good idea to hold locks for long durations.

Map normalMap = new HashMap();

Map syncMap = Collections.synchronizeMap(normalMap);

synchMap.put(“foo”, “bar”); // thread safe

synchronized(syncMap) {

Iterator it = synchMap.keySet().iterator();

while(it.hasNext)

{

// complete batch operations on the map’s contents

}

}

(XII) Java Threads - 32

Java.util.concurrent

Consider replacing collection class synchronization wrappers
with concurrent collections. They are more sophisticated,
and can offer dramatic scalability improvements.

 Study java.util.concurrent.*

 java.util.concurrent.atomic.AtomicLong

 BlockingQueue

 ConcurrentHashMap

 CopyOnWriteArrayList

 Semaphores, Barriers, Latches (synchronizers)

 FutureTask

 ExecutorService // Instead of Thread.start() ?

 ThreadFactory

 ThreadLocal<T> // Local copy of T per Thread

(XII) Java Threads - 33

Thread Summary

 The first rule of thumb is to try to AVOID thread problems by not sharing
state, and by using (final) immutable variables.

 Consider the design option of using a queue to serialize “commands” using a
single “consumer thread.”

 Try to design your code so that multiple threads do not operate on the same
object(s) at the same time.

 When designing a synchronization locking strategy to prevent safety
violations, choose your monitor objects carefully. If you can get away with
using a single monitor object, you will prevent deadlock.

 Misuse (or overuse) of synchronized code can lead to liveness problems.

 Don’t assume anything about Thread time-slicing.

 Avoid “polling” Threads if you can use the Observer design pattern.

 If you must have many threads, consider recycling them with a ThreadPool.

(XII) Java Threads - 34

Thread Summary (continued)

 Document thread safety. If a class is required to be thread safe, say so!

 Testing and debugging can be difficult due to the lack of repeatability and
platform variation. There are some helpful “threadalizer” tools out there...

 There are Patterns for Thread design. Study them.

 We have only scratched the surface…

 Further coverage of Java Threads is beyond the scope of this course.

 Read Java Concurrency in Practice
Brian Goetz, Addison Wesley 2006. <ISBN 0-321-34960-1 >

